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Abstract

We consider complex manifolds with a class of holomorphic coordinate functions satisfying
the condition that each transition function is given by the standard action onCP

2n−1 of some
element in Sp(2n,C)/Z2. We show that such a manifold has a natural contact structure. Given any
contact manifold, one can associate with it a symplectic manifold. It is shown that the symplectic
manifolds arising from complex manifolds with special coordinate functions of the above type
admit a canonical quantization. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let V be complex vector space of dimension 2n + 2 andω ∈ ∧2V ∗ a symplectic form
onV . The space of all automorphisms ofV preservingω will be denoted by Sp(V ). The
center of Sp(V ) is Z2 consisting of±IdV . The quotient Sp(V )/Z2 will be denoted byG. It
acts faithfully on the projective spaceP(V ) of lines inV .

LetM be a complex manifold of dimension 2n+1. AG-structure onM is a covering ofM
by holomorphic coordinate charts{Ui, φi}i∈I , whereφi :U → P(V ) is a biholomorphism
with the image, such that eachφi ◦ φ−1

j is the restriction of the action of someTi,j ∈ G

on P(V ). If M is equipped with aG-structurep, then we construct a contact structure
F(p) ⊂ TM onM.
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Let F ⊂ TZ be a general contact structure on a complex manifoldZ, not necessarily of
the above type. Denoting the quotient TZ/F by N , letN ′ := N \ {0} be the complement
of the zero section. The spaceN ′ has a natural symplectic form arising from the contact
structure.

Let N ′(p) denote the symplectic manifold corresponding to the contact structureF(p)
defined above. We prove thatN ′(p) admits a canonical quantization (Theorem 4.2).

In [15], quantization for a Riemann surface with projective structure was considered.

2. Contact structure and projective space

2.1. Contact structure

Let M be a complex manifold of odd dimension, say 2n + 1. Its holomorphic tangent
bundle will be denoted by TM. A contact structure onM is a holomorphic subbundle
F ⊂ TM of rank 2n which is maximally nonintegrable. To explain this nonintegrability
condition, letN denote the normal bundle TM/F , and let

q: TM → N (2.1)

be the obvious quotient map. We have a homomorphism

ψ :F ⊗ F → N

that sendss1 ⊗ s2 to q([s1, s2]), wheres1 ands2 are any pair of (local) sections ofF and
[s1, s2] is the Lie bracket. It is easy to see that the two identities for Lie bracket

1. [s1, s2] = −[s2, s1],
2. [fs1, s2] = f [s1, s2] − 〈df, s2〉s1
ensure thatψ is a homomorphism of vector bundles. The point to note is thatq(〈df, s2〉s1) =
0.

The subbundleF is calledmaximally nonintegrableif the bilinear form onF defined by
ψ is nondegenerate. Sinceψ is antisymmetric, the nondegeneracy condition implies that
the dimension ofF must be even.

Let ω be a nowhere vanishing one-form on an open subsetU of M such that for every
x ∈ U , the kernel of the homomorphism

ω(x) : TxM → C

coincides with the subspaceFx ⊂ TxM. Note that fixing such a form is equivalent to
fixing a trivialization of the line bundleN overU . The evaluation ofω onN defines the
corresponding trivialization ofN . Conversely, if we trivializeN overU , then the quotient
homomorphismq in (2.1)becomes a one-form onU .

Consider the top form̄ω := ω∧ (dω)n onU . It can be shown that the condition thatω̄ is
nowhere vanishing onU depends only onF and is independent of the choice ofω. Indeed, if
we substituteω by θ = fω, wheref is a smooth function onU , then dθ = f dω+df ∧ω.
Using this and the factω ∧ ω = 0 we conclude thatθ ∧ (dθ)n = f n+1ω̄.
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It is easy to check thatF is maximally nonintegrable if and only ifM can be covered
by open subsets with trivializations ofN over them such that on each of the open sets the
corresponding form̄ω is nowhere vanishing.

The projection of the total space of the normal bundleN toM will be denoted byp. Let

N ′ := N \ {0}
be the complement of the zero section of the total space ofN . The restriction ofp toN ′ will
also be denoted byp. The pullback line bundlep∗N overN ′ is evidently trivial. Indeed,
p∗N has a tautological section overN which does not vanish anywhere onN ′.

Using the trivialization ofp∗N overN ′, the projectionq in (2.1)defines a one-form on
N ′. To define the one-form in details, for anyz ∈ N ′, let dp(z):TzN ′ → Tp(z)M be the
differential of the projectionp. Sincep−1(p(z)) = Cz, the vectorz identifies the fiber
Np(z) with C. Therefore, the composition homomorphism

q ◦ dp(z) : TzN
′ → Np(z) = C

defines a one-form onN ′. Let θ denote this holomorphic one-form onN ′. Clearly θ is
nowhere vanishing.

Proposition 2.1. A subbundle F of TM of corank one is a contact structure if and only if
the two-formdθ onN ′ is a symplectic form.

Proof. Take a sufficiently small open subsetU of M. Fix a sections : U → N ′. Sop ◦ s
is the identity map ofU . Let f denote the function onp−1(U) ⊂ N ′ that sends anyz to
the complex numberc with the propertycz= s(p(z)).

Since the sections trivializes the line bundleN overU , the quotient homomorphismq
defines a one-form onU . Letω denote this one-form onU . It is straight-forward to check
that the identity

θ = fp∗ω

is valid. Consequently, we have

dθ = fp∗ dω + df ∧ p∗ω. (2.2)

Now, from(2.2)we immediately have the identity

(dθ)n+1 = f n df ∧ p∗(ω ∧ (dω)n) (2.3)

of top forms onp−1(U) ⊂ N ′. If dθ is a symplectic form then(dθ)n+1 is nowhere vanishing.
In that case(2.3)implies thatω∧(dω)n is nowhere vanishing. In other words,F is a contact
structure.

Conversely, ifF is a contact structure, then first observe that if(x1, x2, . . . , x2n+1) is a
holomorphic coordinate function onU , then(f, x1 ◦ p, x2 ◦ p, . . . , x2n+1 ◦ p) is a holo-
morphic coordinate function onp−1(U). Consequently, from(2.3) it follows immediately
that ifω∧ (dω)n is nowhere vanishing, then(dθ)n+1 is also nowhere vanishing onp−1(U).
Since dθ is closed, this implies that ifF is a contact structure then dθ is a symplectic form.
This completes the proof of the proposition. �
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We will give an alternative description of the formθ .
On the total spaceΩ1

M of the holomorphic cotangent bundle there is a canonical one-form
which is defined as follows. Denoting the projection ofΩ1

M to M by f , consider the
differential df (z):TzΩ1

M → Tf (z)M of f at a pointz ∈ Ω1
M . The composition

TzΩ
1
M

df (z)→ Tf (z)M
z→C

defines a one-form onΩ1
M which will be denoted byη.

Consider the dual homomorphismq�:N∗ → Ω1
M of the homomorphismq in (2.1). The

complementN∗ \ {0} of the zero section is identified withN ′ defined earlier. Indeed, any
z ∈ N ′ ∩ p−1(x) identifies the fiberNx , hence its dualN∗x , with C. Let

g:N ′ → N∗ \ {0} (2.4)

be the isomorphism that sends anyz to the element inN∗p(z) corresponding to 1 for the
trivialization of it defined byz.

The following lemma is obvious after unraveling the definitions.

Lemma 2.2. The one-formθ onN ′ coincides with(q� ◦ g)∗η.

TheLemma 2.2gives the following reformulation ofProposition 2.1: a subbundleF of TM
of corank one is a contact structure if and only if the two-form(q� ◦ g)∗ dη on N ′ is a
symplectic form.

2.2. Contact structure on projective space

Let V be a complex vector space of dimension 2n+ 2 equipped with a symplectic form
ω. In other words,ω is an anti-symmetric nondegenerate bilinear form onV .

LetP(V ) denote the projective space consisting of all one-dimensional subspaces ofV .
The natural projection ofV \ {0} to P(V ) will be denoted byπ .

Using the symplectic formω, we will construct a contact structure onP(V ).
Take any lineα ∈ P(V ) in V . Consider the hyperplane

Vα = α⊥ := {v ∈ V |ω(v, α) = 0}.
Sinceω is antisymmetric,α is contained inVα. Therefore, the image ofVα by the differential
dπ of the projectionπ is a hyperplane in the tangent spaceTαP (V ). Note that this hyperplane
of TαP (V ), which we will henceforth denote byFα, does not depend on the choice of the
vector in the lineα at which the differential dπ is considered.

Let F denote the holomorphic subbundle of the tangent bundleTP(V ) whose fiber over
anyα ∈ P(V ) is the hyperplaneFα constructed above.

For anyv ∈ V , the holomorphic tangent spaceTvV is identified withV . Hence onV \{0}
we have the tautological vector field that associatesw to anyw ∈ V \ {0}. This vector field
will be denoted byτ . Let

γ := iτω (2.5)

be the one-form onV \ {0} obtained by contractingω by the vector fieldτ .
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Consider the spaceN ′ equipped with one-formθ constructed inSection 2.1from the
subbundleF .

Proposition 2.3. There is a natural degree two covering mapβ from V \ {0} to N ′. If
β(v) = β(w), thenv = ±w. The mapβ has the property thatp ◦β = π , wherep as before
is the obvious projection ofN ′ to P(V ). Furthermore, β∗θ coincides with the one-formγ
defined in(2.5).

Proof. Take any vectorv ∈ V \ {0}. Letα := Cv be the line inV defined byv.
Recall the projectionπ :V \ {0} → P(V ). Consider its differential

dπ(v):V → TαP (V )

at the pointv. Take anyw ∈ V such that

ω(v,w) �= 0.

Now sendv to

1

ω(v,w)
q(dπ(v)(w)) ∈ Nα,

whereNα = TαP (V )/Fα andq, as in(2.1), is the projection ofTαP (V ) toN . First observe
that since the kernel of dπ(v) is the lineα andω(v, v) = 0, we have dπ(v)(w) �= 0.
Furthermore, since the subspaceFα ⊂ TαP (V ) is the image ofVα andw¬ ∈ Vα, we have

q(dπ(v)(w)) �= 0.

So,q(dπ(v)(w))/ω(v,w) is a nonzero element in the fiberNα.
If we substitutew byw′ = cw, wherec is a complex number, then clearlyq(dπ(v)(w′))/

ω(v,w′) coincides withq(dπ(v)(w))/ω(v,w). If we substitutew by any w′ satisfy-
ing the conditionω(v,w′) �= 0, then there is a nonzero complex numberc such that
cw − w′ ∈ Vα. This implies thatq(dπ(v)(w′)) = cq(dπ(v)(w)). Therefore, the vector
q(dπ(v)(w))/ω(v,w) is independent of the choice ofw.

Let

β:V \ {0} → N ′

be the map that sends anyv to q(dπ(v)(w))/ω(v,w). Since the differential dπ(−v) coin-
cides with−dπ(v), it follows immediately thatβ(v) = β(−v). It is easy to check that if
β(v) = β(v′), then eitherv = v′ or v = −v′.

This mapβ is the degree two covering map asserted in the proposition. Clearly,p◦β = π .
To complete the proof we need to show thatβ∗θ = γ . It may be noted that if the symplectic
formω is replaced bycω, wherec ∈ C \ {0}, then the subbundleF remains unchanged, but
the mapβ changes by multiplication with 1/c.

For any lineα in V and vectorv ∈ α, let

fv:
V

Vα
→ C
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be the functional defined byv′ �→ ω(v, v′). SinceNα = V/Vα, we have a map

f :V \ {0} → N∗

that sends anyv to the functionalfv.
It is easy to see thatf coincides withg ◦ β, where the mapg is defined in(2.4). Indeed,

this follows immediately from the fact that in the identificationNα = V/Vα, the vector
cv′/fv(v′), wherec ∈ C andv′ a nonzero vector inV/Vα, corresponds tocβ(v).

Now in view ofLemma 2.2it suffices to prove that(q� ◦ f )∗η coincides withγ , where
q� is defined inSection 2.1. But the identity(q� ◦f )∗η = γ is immediate after unraveling
the definitions. This completes the proof of the proposition. �

The following proposition is deduced fromPropositions 2.1 and 2.3.

Proposition 2.4. The subbundle F of TP(V ) defines a contact structure onP(V ).

Proof. In view of Proposition 2.1and the assertion inProposition 2.3thatβ∗θ = γ , it
suffices to prove that dγ is a symplectic form onV ′. In fact, we will show that

dγ = 2ω. (2.6)

Take anyu, v ∈ V and denote the corresponding constant vector fields onV also byu and
v. To prove(2.6), first observe that

dγ (u, v) = (diτω)(u, v) = (Lτω)(u, v) = −ω(Lτu, v)− ω(u,Lτ v),

whereL denotes the Lie derivative. ButLτu = [τ, u] = −u. Therefore,(2.6) is proved.
This completes the proof of the proposition. �

Note that if the symplectic formω is replaced by its nonzero scalar multiple, then the contact
structure remains unchanged.

The formγ has the following description in terms of local coordinates.
Let zi, i = 1, . . . ,2n+ 2, be a complex basis of linear functionals onV such that

ω =
∑

1≤i<j≤2n+2

dzi ∧ dzj .

Let α = C(x1, . . . , x2n+2) be a line inV expressed in terms of the dual basis ofV . We
haveVα = {(z1, . . . , z2n+2) ∈ V |∑i<j (xizj − xj zi) = 0}. From this it can be shown that
γ =∑

i<j (zj dzi − zi dzj ).

3. Projective structure and contact structure

As in Section 1, letV be a 2n+2 dimensional complex vector space equipped with a sym-
plectic formω. Let Sp(V ) denote the group of all automorphisms of the vector spaceV pre-
serving the symplectic formω. The center of Sp(V ) isZ2 = ±IdV . The quotient Sp(V )/Z2
will be denoted byG. The groupG acts onP(V ) as automorphisms. This action is faithful.

Let M be a complex manifold of dimension 2n + 1. A G-structure onM is defined by
giving a covering ofM by holomorphic charts, say{Ui, φi}i∈I , whereφi is a biholomor-
phism from the open subsetUi of M to an open subset ofP(V ), such that for every pair
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i, j ∈ I , there isTj,i ∈ G with the property that the compositionφj ◦ φ−1
i is the restriction

of the automorphismTj,i of P(V ) to φi(Ui ∩ Uj). Two suchG-structures{Ui, φi}i∈I and
{Ui, φi}i∈I ′ are calledequivalentif their union{Ui, φi}i∈I∪I ′ is again aG-structure. By a
G-structureonM we will always mean an equivalence class in the above sense. Therefore,
given aG-structurep onM, there is a maximal atlas{Ui, φi}i∈I with the above property of
transition functions. Any coordinate function(U, φ) will be calledcompatiblewith p if it
is in the maximal atlas.

If n = 1, thenG = PSL(2,C). Therefore, aG-structure on a Riemann surface is a
projective structure in the usual sense[8]. See[11, Chapter 8]for more generalG-structures.

LetM be equipped with aG-structure which we will denote byp.
The action ofG on P(V ) preserves the contact structureF on P(V ) obtained in

Proposition 2.4. Therefore, theG-structurep induces a contact structure onM. This contact
structure will be denoted byF(p). So for any coordinate chart(Ui, φi) for p, the restriction
of the subbundle

F(p) ⊂ TM

to Ui is simply the inverse image of the subbundleF |φi(Ui) ⊂ T φi(Ui) by the differential
dφi .

Let (N ′(p),dθ(p)) denote the symplectic manifold corresponding toF(p) obtained in
Proposition 2.1. In the next section we will describe a canonical quantization of this sym-
plectic structure.

UsingProposition 2.3we will give another description of(N ′(p),dθ(p)).
Let V ′ denote the quotient ofV \ {0} obtained by identifying any vectorv with −v. Let

π ′:V ′ → P(V ) denote the obvious projection. Since the formω on V is invariant under
the automorphism−IdV , it descends as a symplectic form onV ′. This descended form on
V ′ will be denoted byω′.

Using the mapβ in Proposition 2.3, the spaceV ′ gets identified withN ′. Furthermore,
this identification takes the projectionp to π ′. In (2.6) we saw that dγ = 2ω. Therefore,
the identification ofN ′ with V ′ usingβ takes the form dθ onN ′ to 2ω′.

The obvious action of Sp(V ) on V induces an action ofG on V ′ which preserves the
form ω′. The projectionπ ′ is equivariant for the actions ofG onV ′ andP(V ). Since the
contact structureF onP(V ) obtained inProposition 2.4is invariant under the action ofG
onP(V ), we conclude that the action ofG onP(V ) lifts to an action onN ′. It is immediate
that the action ofG on N ′ preserves the one-formθ . The identification ofV ′ with N ′ is
evidentlyG-equivariant.

If {Ui, φi}i∈I is a covering ofM by coordinate charts compatible with theG-structure
p, then for eachi ∈ I , consider the open subsetπ ′−1(φi(Ui)) ⊂ V ′. For any ordered pair
i, j ∈ I , the action ofTj,i := φj ◦ φ−1

i ∈ G on V ′ identifiesπ ′−1(φi(Ui ∩ Uj)) with
π ′−1(φj (Ui ∩ Uj)). Therefore, we may glueπ ′−1(φi(Ui)) andπ ′−1(φj (Uj )) using the
isomorphismTi,j of π ′−1(φi(Ui ∩ Uj)) with π ′−1(φj (Ui ∩ Uj)).

SinceTi,j = T −1
j,i andTi,j Tj,kTk,i = e, the combination of all these gluing produce

a symplectic manifoldW equipped with a symplectic formΘ. The symplectic form is
constructed fromω′ using itsG-invariance property. Furthermore, the projectionπ ′ being
G-equivariant induces a projectionψ of W to M. From Proposition 2.3it follows im-
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mediately thatW is identified withN ′(p) which takes the symplectic form dθ(p) to Θ.
Furthermore, this identification ofW with N ′(p) takes the projectionψ to the obvious
projection ofN ′(p) toM.

4. Quantization of symplectic structure

4.1. Definition of quantization

Let Z be a complex manifold equipped with a holomorphic symplectic formΩ. Let
C(Z) denote the commutative algebra consisting of all complex valued smooth functions
on Z. The symplectic formΩ defines a Poisson structure onC(Z) which is defined as
follows.

Since the bilinear pairingΩ on TZ is nondegenerate, it defines a bilinear pairing on the
cotangent bundleΩ1

Z which will be denoted byΩ−1. The Poisson structure is defined by
sending any pair of functionsf andg in C(Z) to

{f, g} := Ω−1(df,dg). (4.1)

This Poisson structure makesC(Z) into a Lie algebra satisfying the Leibniz identity
{fg, k} = f {g, k} + g{f, k}.

LetA(Z) := C(Z)[[h]] be the space of all formal Taylor series

f :=
∞∑
j=0

hjfj ,

wherefj ∈ C(Z) andh is a formal variable.
A quantizationof the symplectic formΩ is an associative algebra operation onA(Z)

satisfying certain conditions[1,7,12]. For another elementg :=∑∞
j=0 h

jgj ∈ A(Z), if

f�g =
∞∑
j=0

hj cj

is the multiplication, then the conditions in question say:

1. eachci is some polynomial (independent off andg) in derivatives (of arbitrary order)
of {fj }j≥0 and{gj }j≥0;

2. c0 = f0g0;
3. 1�f = f�1= f for everyf ∈ C(Z);
4. f�g − g�f = √−1h{f0, g0} + h2k, wherek ∈ A(Z) depends onf, g.

The first condition implies that the quantization is local in the sense that the restriction of
f�g to an open subsetU ofZ depends only onf |U andg|U . In other words, iff |U = f1|U
andg|U = g1|U , then(f�g)|U = (f1�g1)|U . The second condition says that the algebra is
a deformation, parametrized by the variableh, of the usual commutative algebra structure
of C(Z). The third condition says that the derivative, with respect to the variableh, of the
algebra operation coincides with the Poisson bracket.
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It is known that all symplectic manifolds admit quantizations[4,5,7]. However, there is
no uniqueness of quantization. In fact, if dimZ ≥ 2, then there are infinitely many distinct
quantizations ofΩ.

We will now describe a very well-known quantization called the Moyal–Weyl quantiza-
tion.

4.2. The Moyal–Weyl quantization

Consider the symplectic vector space(V , ω). We will think ofV as a symplectic manifold
with symplectic structureω. As inSection 4.1, letC(V )denote the space of smooth complex
valued functions onV equipped with the Poisson structure defined in(4.1).

Let

∆:V → V × V

denotes the diagonal homomorphism defined byv �→ (v, v). There exists a unique differ-
ential operator

D:C(V × V )→ C(V × V ) (4.2)

with constant coefficients such that forf, g ∈ C(V ),

{f, g} = ∆∗D(f ⊗ g),

wheref ⊗ g is the function onV × V defined by(u, v) �→ f (u)g(v).
TheMoyal–Weyl algebrais defined by

f�g = ∆∗exp(1
2

√−1hD)(f ⊗ g) ∈ A(V ) (4.3)

for f, g ∈ C(V ), and it is extended to a multiplication operation onA(V ) using bilinearity
condition with respect toh. In other words, iff := ∑∞

j=0 h
jfj andg := ∑∞

j=0 h
jgj are

two elements ofA(V ), then

f�g =
∑
i,j

hi+j (fi�gj ) ∈ A(V ).

It is known that this operation� defined above makesA(V ) into an associative algebra that
quantizes the symplectic structureω. See[12] for the details.

The Poisson structure onC(V ) and the differential operatorD has the following expres-
sion in terms of a symplectic basis{zi}1≤i≤2n+2 of functionals onV .

If ω = 1
2

∑
i,j ωij dzi ∧ dzj , then

{f, g} =
∑
i,j

tij
∂f

∂zi

∂g

∂zj
,

where(tij ) is the inverse matrix of(ωij ). The operator∆∗D has the expression

∆∗D(f ⊗ g)(z) =
∑
i,j

tij
∂

∂xi

∂

∂yj
(f (x)g(y))|y=x=z
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(see[12]), wherexi (respectively,yi) are the linear coordinates on the first (respectively,
second) factor ofV ×V obtained fromzi . Forf, g ∈ C(V ), the Moyal–Weyl productf�g

has the expression

(f�g)(z) =
∑
k


 1

k!



√−1

2

∑
i,j

tij
∂

∂xi

∂

∂yj




k

(f (x)g(y))|y=x=z


hk.

We will use the Moyal–Weyl quantization in quantizing the symplectic manifold(N ′(p),dθ(p))
associated to a manifoldM with aG-structure.

4.3. Quantization on projective space

Consider the contact structureF onP(V ) constructed inProposition 2.4. FromProposi-
tion 2.1we know that(N ′,dθ) in Proposition 2.3is a symplectic manifold.

In Section 3we saw thatN ′ is identified with the quotientV ′ = (V \ {0})/Z2 taking dθ
to the symplectic form 2ω′ onV ′ defined inSection 3.

The involution−IdV of V preserves the symplectic form 2ω and hence the differential
operatorD in (4.2) for 2ω satisfies the identity

D(f )(−v,−w) = D(−f )(v,w) (4.4)

for every functionf ∈ C(V × V ).
Consider the Moyal–Weyl quantization ofC(V ), defined inSection 4.2, for the sym-

plectic form 2ω on the vector spaceV . The identity(4.4) ensures that the Moyal–Weyl
quantization for 2ω is invariant under the involution−IdV of V . Consequently, it descends
to a quantization of the symplectic form 2ω′ onV ′.

Now using the above mentioned identification of(V ′,2ω′)with (N ′,dθ), the quantization
of 2ω′ onV ′ gives a quantization of the symplectic form dθ onN ′. Let

�:A(N ′)⊗
C

A(N ′)→ A(N ′) (4.5)

be the above obtained quantization of the symplectic structure dθ .
Since 2ω is invariant under the action of Sp(V ) onV , from the definition ofD for 2ω

given in(4.2) if follows that for anyτ ∈ Sp(V ),

D(Tτ ◦ f ) = Tτ ◦D(f ),

whereTτ denotes the diagonal action ofτ on V × V andf ∈ C(V × V ). This identity
implies that the Moyal–Weyl product for 2ω defined in(4.3)satisfies the identity

(f ◦ τ)�(g ◦ τ) = (f�g) ◦ τ
for everyf, g ∈ C(V ) and everyτ ∈ Sp(V ).

We noted inSection 3that the action ofG onN ′ is the transport of the action ofG on
V ′. Therefore, we have the following proposition.
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Proposition 4.1. The quantization of the symplectic manifold(N ′,dθ) constructed in(4.5)
has the property that for everyτ ∈ G andf, g ∈ A(N ′), the identity

(f ◦ τ)�(g ◦ τ) = (f�g) ◦ τ
is valid.

ThisG invariance property of� enables us to construct a quantization for anyG-structure.

4.4. G-structure and quantization

As in Section 3, let M be a complex manifold equipped with aG-structurep. Let
(N ′(p),dθ(p)) be the symplectic manifold constructed inSection 3from p. The obvi-
ous projection ofN ′(p) to M will be denoted byγ . As in Section 3, the contact structure
onM corresponding top will be denoted byF(p).

Take a holomorphic coordinate chartφ:U → P(V ) of M compatible with the given
G-structurep. Therefore,φ takes the contact structureF(p)|U to F |γ (U), whereF is the
contact structure onP(V ). Therefore,γ−1(U) gets identified withp−1(γ (U)), wherep
is the obvious projection ofN ′ to P(V ). This identification, which we will denote by
ψ , evidently takes the symplectic form dθ on p−1(γ (U)) to the symplectic form dθ(p)
on γ−1(U). Consequently, usingψ , the quantization of dθ constructed in(4.5) gives a
quantization of the symplectic form dθ(p) overU .

If we have another holomorphic coordinate chartφ′:U → P(V ) compatible withp, then
φ′ ◦ φ−1 coincides with the action of someg ∈ G onP(V ). Now Proposition 4.1implies
that the new quantization of dθ(p) overγ−1(U) corresponding toφ′ actually coincides with
the previous one constructed fromφ. Recall that the Moyal–Weyl quantization is local, as
asserted by the first condition on� in Section 4.1.

Therefore, if we coverM by holomorphic coordinate charts{Ui, φi} compatible with
p, then the quantization of dθ(p) over individual open setsγ−1(Ui) constructed using the
corresponding coordinate functionφi patch compatibly. In other words, on eachγ−1(Ui ∩
Uj), the quantizations constructed usingφi andφj coincide.

Thus we have proved the following theorem.

Theorem 4.2. For any G-structurep on M, the corresponding symplectic manifold(N ′(p),
dθ(p)) admits a canonical quantization.

A given complex manifold may admit more than oneG-structure. For example, when
M is a Riemann surface, the space of all projective structures onM is an affine space for
H 0(M,K⊗2

M ), the space of quadratic differentials onM [8]. We remarked earlier that a
G-structure on a Riemann surface is same as a projective structure. Therefore, a connected
Riemann surface admits exactly one projective structure if and only if it is compact with
genus 0. Using the uniformization theorem it is easy to show that any Riemann surface
admits a projective structure.

If M is a Riemann surface with aG-structurep, thenN ′(p) is the space of nonzero tangent
vectors ofM. Therefore,N ′(p) does not depend onp. In fact, even the symplectic structure
dθ(p) onN ′(p) is independent ofp. The space of nonzero tangent vectors of a Riemann
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surface can be identified with the space of nonzero cotangent vectors. But the cotangent
bundle has a canonical symplectic structure. The symplectic form dθ(p) coincides with
this canonical symplectic form. However, it can be proved that the quantization of dθ(p)
constructed inTheorem 4.2determines the projective structurep.

To each Riemann surface with projective structure, there are some associated differential
operatorsDi of orderi, wherei ≥ 2 [2, Theorem 4.1]. The second-order operatorD2 is the
Liouville operator that determines the projective structure. The quantization inTheorem
4.2determines these operatorsDi . Consequently, given a quantization corresponding to a
projective structure, the quantization determines the projective structure uniquely. We recall
that the space of all equivalence classes of projective structures on a Riemann surfaceM is
an affine space for the space of all quadratic differential onM [8]. In particular, ifM is a
compact Riemann surface of genusg, then the space of all equivalence classes of projective
structures onM is a complex affine space of dimension 3g − 3.

To construct examples ofG structures on higher dimensional complex manifolds, con-
sider the group SU(1,2n+1) that preserves the sesquilinear form−|z1|2+

∑2n+2
i=2 |zi |2 on

C
2n+2. Its action onCP

2n+1 preserves the unit ball inC2n+1 ⊂ CP
2n+1. We recall that a the-

orem of Yau asserts that a smooth projective manifoldX of dimension 2n+1 is isomorphic
to the quotient of the unit ball by a torsionfree discrete subgroup of SU(1,2n+1) if and only
if the canonical bundleKX is ample and(2n + 1)c1(X)2n+1 = 4(n + 1)c1(X)2n−1c2(X)

[14]. Consider the intersection

G′ := SU(1,2n+ 1) ∩ Sp(2n+ 2,C).

Now if Γ is a torsionfree discrete subgroup ofG′ then quotient of the unit ball by the action
of Γ has a naturalG-structure. In fact instead ofG′ we can also take the intersection of
SU(1,2n+1)with the group preserving any given symplectic form onC

2n+2 not necessarily
the standard one.

However, it should clarified that although in the case dimension one any Riemann sur-
face admits a projective structure, in higher dimensions, the condition of existence of a
G-structure imposes restrictions on the Chern classes on the underlying complex manifold
(see e.g.[9, Theorem 5, p. 94]).

Let (Z,Ω) be a symplectic manifold as inSection 4.1. A symplectic connectionis a
torsionfreeC∞ connection onZ that preserves the symplectic formΩ. A connection∇
preserves the symplectic form if and only if for any two locally defined vector fieldss and
t onZ we have

dΩ(s, t) = Ω(∇(s), t)+Ω(s,∇(t)).
Given a symplectic connection, in[7], Fedosov proves the existence of a canonical quanti-
zation ofΩ.

Let M be a complex manifold equipped with aG-structurep. It is easy to see that
the symplectic manifold(N ′(p),dθ(p)) in Theorem 4.2has a canonical flat symplectic
connection. To see this, given a vector spaceV , consider the unique connection on it
preserved by translations and linear automorphisms. This connection is torsionfree and
flat. Given a symplectic formω on V , this connection is a symplectic connection, as it
preserves the symplectic form. This connection clearly induces a symplectic connection
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on the symplectic manifold(V ′,2ω′) in Section 4.3which is invariant under the action of
G := Sp(V )/Z2 onV ′. Finally, since the symplectic manifold(N ′(p),dθ(p)) is built from
(V ′,2ω′) with transition functions inG, this symplectic connection on(V ′,2ω′) induces a
symplectic connection on(N ′(p),dθ(p)). The symplectic connection on(N ′(p),dθ(p)) is
obviously flat.

If we consider the proof in[7] of the existence of a canonical quantization for a symplectic
connection, then we first observe that the sectionr in [7, (3.3), p. 219]is identically zero
for a flat symplectic connection. Indeed, this follows immediately from[7, Theorem 3.2].
From this observation it can be deduced that the explicit quantization of(N ′(p),dθ(p))
constructed inTheorem 4.2actually coincides with the canonical one obtained in[7]. In
other words,Theorem 4.2can be interpreted as an explicit realization, in the special situation
under consideration, of the more abstract Fedosov quantization.

Given any quantization of a symplectic manifold there are some associated cohomological
invariants[6,7,10]. Given a quantization of a symplectic manifold(Z,Ω), the corresponding
cohomological invariant takes value in the direct sum

1√−1h
H 2(Z,C)⊕H 2(Z,C[[h]]), (4.6)

where h, as before, is a formal parameter (see p. 348 of[10]). The component in
(1/
√−1h)H 2(Z,C) coincides with(1/

√−1h)-times the de Rham cohomology class rep-
resented by the closed formΩ.

Let

ζ(p) ∈ 1√−1h
H 2(N ′(p),C)⊕H 2(N ′(p),C[[h]])

be the cohomological invariant for the quantization inTheorem 4.2for theG-structurep.
Since in our situation the sectionr in [7, (3.3), p. 219]is identically 0, from[7, (3.2), p. 219]
we know that the Weyl curvature is(1/

√−1h)-times the symplectic form dθ(p). From this
it follows immediately that the component ofζ(p) in H 2(N ′(p),C[[h]]) vanishes (see the
expression of the invariant in terms of Weyl curvature given in[10, p. 348]). Since the
symplectic form dθ(p) onN ′(p) is exact, we haveζ(p) = 0.

If the cohomological invariants for two quantizations of a given symplectic manifold
(Z,Ω) coincide, then there is an automorphism ofA(Z), defined using differential opera-
tors, that takes one quantization to the other[10].

In the special case whereM is a Riemann surface, we saw that the corresponding sym-
plectic manifold(N ′(p),dθ(p)) is independent of the projective structurep. Since the co-
homological invariant vanish identically, we conclude that given two projective structures
on a Riemann surfaceM, there is an automorphism ofA(Z), whereZ denote the space of
all nonzero tangent vectors ofM, that takes the quantization for one projective structure
to the quantization for the other projective structure. In contrast, recall the earlier remark
that a projective structure on a Riemann surface can be recovered from the corresponding
quantization.

Given aG-structure on a complex manifoldX of arbitrary dimension, there are some
differential operators onX associated to it[3, Theorem 3.7, p. 10]which generalizes the



368 I. Biswas, R. Dey / Journal of Geometry and Physics 42 (2002) 355–369

construction of[2]. It is straight-forward to check that these differential operators can also
be recovered directly from the quantization constructed inTheorem 4.2for aG-structure.

Remark. There is another kind of quantization of a symplectic manifold known as geo-
metric quantization[13]. For a symplectic manifold(Z, ω), consider the space of functions
C(Z) equipped with Poisson structure. Ageometric quantizationof (Z, ω) is defined by
giving a Hilbert spaceH and a linear map

Th:C(Z)→ A(H)

for everyh ∈ R, whereA(H) is the space of densely defined linear operators onH, satisfying
the condition

Th(f ) ◦ Th(g)− Th(g) ◦ Th(f ) = −
√−1hTh({f, g})

for everyf, g ∈ C(Z).
If M is a complex manifold of dimension 2n+ 1 equipped with a contact structure, then

consider the symplectic manifold(N ′,dθ) in Proposition 2.1. Note that(dθ)n+1∧ (dθ)n+1

defines a measure onN ′. LetH be the space of square-integrable functionsL2(N ′). For a
functionf ∈ C(N ′), let (dθ)−1(df ) denote the corresponding vector field. For anyh ∈ R

considerTh(f ) ∈ A(L2(N ′)) defined by

Th(f )(φ) = −
√−1hXf (φ)− θ(Xf )φ + f φ.

It is straight-forward to check that the pair(L2(N ′), T ) defines a geometric quantization of
(N ′,dθ).
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